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A Constrained-Likelihood Approach to Marker-Trait Association Studies
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Marker-trait association analysis is an important statistical tool for detecting DNA variants responsible for genetic
traits. In such analyses, an analysis model of the mean genetic effects of the genotypes is often specified. For instance,
the effect of the disease allele on the trait is often specified to be dominant, recessive, additive, or multiplicative.
Although this model-based approach is powerful when the analysis model is correctly specified, it has been found
to have low power sometimes when the specified model is incorrect. We introduce an approach that does not
require the specification of a particular genetic model. This approach is built upon a constrained maximum likelihood
in which the mean genetic effect of the heterozygous genotype is required to not exceed those of the two homozygous
genotypes. The asymptotic distribution of the likelihood-ratio statistic is derived for two special cases. A simulation
study suggests that this new approach has power comparable to that of the model-based method when the analysis
model is correctly specified. This approach uses one marker at a time (i.e., it is a single-marker analysis). However,
given the latest findings that powerful inferential procedures for haplotype analyses can be constructed from single-
marker analyses, we expect this approach to be useful for haplotype analyses.

Introduction

Marker-trait association analysis is an important statis-
tical tool for detecting DNA variants responsible for ge-
netic traits. It can provide higher mapping resolution than
do methods based on closely related meiosis events. In
such analyses, it is common to specify an analysis model
of the average genetic effects of the genotypes. For in-
stance, the effect of the disease allele on the trait is often
specified to be dominant, recessive, additive, or multi-
plicative. When the specified model is close to the under-
lying trait model, this model-based approach provides a
powerful means of detecting association. However, when
the specified model is different from the underlying model,
its power may be low (Slager and Schaid 2001; Freidlin
et al. 2002; Schaid et al. 2005). In real-data analyses,
the underlying genetic model is often unknown. For in-
stance, one promising approach to investigation of the
gene-regulation mechanism is to map the expression lev-
els of genes by treating them as quantitative traits (Brem
et al. 2002; Schadt et al. 2003; Yvert et al. 2003; Morley
et al. 2004). Currently, gene-expression arrays contain
thousands of DNA probes, and each probe provides a
quantitative measurement of its expression level. Given
this large number of traits, the model-based method may
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miss many true-positive signals. It is desirable to develop
methods that have power for a wide range of genetic
models.

Analytical methods that have power for a wide range
of genetic models are desired not only for single-marker
analysis but also for haplotype analysis in which multi-
ple markers are involved. Some recent developments
indicate that single-marker tests can be used to construct
powerful inference procedures for haplotype analysis.
Chapman et al. (2003) found that regression analysis
based on a linear combination of tagSNPs is more pow-
erful than the traditional haplotype analysis that is based
on haplotype frequencies. Roeder et al. (2005) further
found that inferential procedures based on single-marker
tests, after correction for multiple testing by permuta-
tion or curve fitting, is at least as powerful as the re-
gression method proposed by Chapman et al. (2003).
In a more recent study, Schaid et al. (2005) described
a testing procedure for haplotype analysis that requires
specification of a “kernel.” One promising way of spec-
ifying a kernel is to derive it from single-marker tests
(Schaid et al. 2005).

There have been some studies, mostly on dichotomous
traits, that have investigated methods that do not rely
on a particular analysis model. Freidlin et al. (2002)
proposed a maximin efficiency robust test and a test
(named “MAX”) based on the maximum of test statis-
tics under several analysis models. They found that the
MAX test is generally more powerful than the other
one. Freidlin et al. (2002) assumed an a priori ordering
of the mean genetic effects for the three genotypes that
are induced from the allele to be tested, by assuming that
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Table 1

Some Quantiles for Test Statistics andL LNew Larger

FREQUENCY

OF ALLELE A
AND STATISTIC

STATISTIC AT

NOMINAL SIGNIFICANCE LEVEL

.1 .05 .01 .001

:p p .01
LNew 4.197 5.507 8.597 13.084
LLarger 3.796 5.000 7.874 12.115

:p p .1
LNew 4.152 5.457 8.536 13.008
LLarger 3.778 4.985 7.867 12.113

:p p .3
LNew 4.111 5.413 8.485 12.949
LLarger 3.752 4.964 7.855 12.109

:p p .5
LNew 4.100 5.401 8.472 12.934
LLarger 3.745 4.957 7.852 12.107

NOTE.—HWE is assumed, so that ,2p p (1 � p)0

, and .2p p 2p(1 � p) p p p1 2

the marker allele associated with the disease allele is
known. Such an ordering can be difficult to make—for
instance, in the expression-level mapping example men-
tioned above. To remove this restriction, Zheng (2003)
proposed a “max and min scores” approach. Another
method that does not require the specification of an
analysis model is to simply compare mean genotypic
effects by use of standard statistical methods such as
analysis of variance. But such an approach may have
low power due to increased degrees of freedom.

Instead of deriving tests from several model-based sta-
tistics or simply comparing the mean genotypic effects,
we adopt a constrained-likelihood analysis under a so-
called no-overdominance constraint. This constraint re-
quires that the mean genetic effect of the heterozygous
genotype not exceed those of the two homozygous geno-
types—that is, it is neither larger than the larger of the
mean genetic effects of the two homozygous genotypes
nor smaller than the smaller of the two. We note that
this constraint is satisfied by the commonly assumed
analysis models—dominance, recessive, additive, and
multiplicative.

In the following section, we introduce our approach
in terms of a generalized linear model. We then apply
this approach to quantitative traits and dichotomous
traits. The asymptotic distribution of the constrained
likelihood-ratio statistic for each kind of trait is intro-
duced. Simulation studies were conducted to assess the
performance of our method, under different generating
models, in comparison with some popular methods.
Technical details are given in appendixes A and B.

Methods

Let A denote the allele being tested for association with
a trait. The three genotypes induced from allele A are

indexed by j ( ), where j is the number of copiesj p 0,1,2
of allele A. Denote the population frequency of genotype
j by . In some situations, the values of are known.p pj j

For instance, for the population, andF p p p p 0.252 0 2

. Suppose that there are individuals with ge-p p 0.5 n1 j

notype j. Given the total number of individuals n: p
, the triplet follows a trinomialn � n � n (n ,n ,n )0 1 2 0 1 2

distribution with a parameter vector . The trait(p ,p ,p )0 1 2

value of the ith individual of genotype j is denoted by
. For dichotomous traits, it is defined that fory y p 1ji ji

cases and for controls. The sample mean for ge-y p 0ji

notype j is denoted by .nj�1ȳ : p n � yj j jiip1

Consider the following generalized linear model for
phenotype y with link function : andg(7) E(y) p m

, where , , is ang(m) p a � d x � (d � d )x x j p 1,21 1 1 2 2 j

indicator of genotype j satisfying if the individualx p 1j

is of genotype j and otherwise. Depending onx p 0j

the random component of the generalized linear model,
there may be another nuisance parameter b (possibly a
vector). For instance, for normal data, b is the variance
of the random component. In the constrained-likelihood
approach introduced here, we require a “no-overdomi-
nance” constraint on the three mean genotypic effects.
That is, the three genotypic means satisfy either a �

or . Thisa � d � a � d � d a � a � d � a � d � d1 1 2 1 1 2

constraint implies that and cannot be of differentd d1 2

signs, and it can be equivalently written , whichd d � 01 2

corresponds to the first and third quadrants on the -d1

plane. When there is no association for allele A,d2

. Let andd p d p 0 V p {(d ,d ,a,b):d p d p 0}1 2 0 1 2 1 2

. The hypotheses of interestV p {(d ,d ,a,b):d d � 0}1 1 2 1 2

are

H :(d ,d ,a,b) � V0 1 2 0

H :(d ,d ,a,b) � V � V . (1)1 1 2 1 0

The other parameters , , , a, and b are nuisancep p p0 1 2

parameters. The requirement contains manyd d � 01 2

commonly used genetic models as special cases. For in-
stance, when the effect of allele A is dominant, we have

, and there is no restriction on . When the effectd p 0 d2 1

of allele A is recessive, we have , and there is nod p 01

restriction on .d2

The likelihood function of the data is{y }ji

L(d ,d ,a,b,p ,p ,p ) p L (p ,p ,p )1 2 0 1 2 1 0 1 2

# L (d ,d ,a,b) ,2 1 2

where is the tri-L (p ,p ,p ) p Pr (n ,n ,n Fp ,p ,p ,n)1 0 1 2 1 2 3 0 1 2

nomial probability of , given n, and where(n ,n ,n )1 2 3

is the con-2 njL (d ,d ,a,b) p � � Pr (y Fd ,d ,a,b)2 1 2 ji 1 2jp0 ip1

ditional probability of the trait values , given{y }ji

.(n ,n ,n )1 2 3

The hypotheses in (1) can be tested using the
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Table 2

Simulated Type I Error Rates for Quantitative
Traits

FREQUENCY

OF ALLELE A,
SAMPLE SIZE,
AND STATISTIC

TYPE I ERROR RATE AT

NOMINAL SIGNIFICANCE LEVEL

.1 .05 .01 .001

:p p .1
:n p 100

LNew .0774 .0366 .0082 .0011
LDom .1024 .0517 .0116 .0010
LRec .0669 .0334 .0068 .0009
LAdd .1008 .0516 .0108 .0011
LLarger .0862 .0435 .0086 .0009
LUnc .0787 .0379 .0091 .0011

:n p 200
LNew .0908 .0435 .0097 .0006
LDom .1075 .0524 .0122 .0011
LRec .0848 .0418 .0076 .0010
LAdd .1095 .0529 .0116 .0009
LLarger .0949 .0481 .0102 .0012
LUnc .0957 .0457 .0096 .0007

:p p .3
:n p 100

LNew .1018 .0506 .0116 .0011
LDom .1064 .0548 .0121 .0015
LRec .1057 .0518 .0110 .0011
LAdd .1062 .0533 .0109 .0013
LLarger .1069 .0544 .0126 .0012
LUnc .1111 .0537 .0128 .0011

:n p 200
LNew .0971 .0491 .0126 .0014
LDom .1028 .0543 .0107 .0019
LRec .0996 .0511 .0116 .0014
LAdd .1038 .0532 .0109 .0010
LLarger .1063 .0535 .0113 .0017
LUnc .1039 .0529 .0124 .0015

:p p .5
:n p 100

LNew .0972 .0496 .0108 .0012
LDom .1057 .0508 .0105 .0012
LRec .1064 .0548 .0130 .0014
LAdd .1034 .0508 .0109 .0017
LLarger .1055 .0515 .0120 .0010
LUnc .1041 .0540 .0109 .0011

:n p 200
LNew .0997 .0478 .0100 .0013
LDom .1024 .0507 .0115 .0018
LRec .1043 .0514 .0107 .0009
LAdd .1072 .0520 .0095 .0008
LLarger .1039 .0531 .0112 .0014
LUnc .1031 .0511 .0099 .0013

Figure 1 Power comparison for the quantitative trait when the
generating model is dominant. The significance level is 0.001. The
order of statistics (shaded bars) is (from left to right): , ,L LNew Dom

, , , , and .L L L L LRec Add Larger Largest Unc

likelihood-ratio statistic. Since andL (p ,p ,p )1 0 1 2

involve two nonoverlapping sets of pa-L (d ,d ,a,b)2 1 2

rameters and since only contains the pa-L (d ,d ,a,b)2 1 2

rameters of interest, the likelihood-ratio statistic equals

L : p 2 max l (d ,d ,a,b) � l ,New 2 1 2 0[ ]d ,a,b subject to d d �0( )1 1 2

where andl (d ,d ,a,b) p log [L (d ,d ,a,b)] l p2 1 2 2 1 2 0

. The nuisance parametersmax l (d p 0,d p 0,a,b)a,b 2 1 2

, , and do not appear in the calculation of .p p p L0 1 2 New

However, we show below that the asymptotic distribu-
tion of can depend on , , and .L p p pNew 0 1 2

To compute , it is essential to compute the con-LNew

strained maximum of . For this purpose,l (d ,d ,a,b)2 1 2

define

L p 2 max l (d ,d p 0,a,b) � lDom 2 1 2 0[ ]
d ,a,b1

to be the likelihood-ratio statistic for the dominance
model and

L p 2 max l (d p 0,d ,a,b) � lRec 2 1 2 0[ ]
d ,a,b2

to be the likelihood-ratio statistic for the recessive model.
Further define . In principle,L p max {L ,L }Larger Dom Rec

the constrained maximum of is straight-l (d ,d ,a,b)2 1 2

forward to compute. According to standard optimi-
zation theory, there are two possible situations regard-
ing the optimal values of and . They are either ind d1 2

the interior of the region satisfying or on thed d 1 01 2

border of this region. The constrained maximum of
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Figure 2 Power comparison for the quantitative trait when the
generating model is recessive. The significance level is 0.001. The order
of statistics (shaded bars) is (from left to right): , , ,L L LNew Dom Rec

, , , and .L L L LAdd Larger Largest Unc

Figure 3 Power comparison for the quantitative trait when the
generating model is additive. The significance level is 0.001. The order
of statistics (shaded bars) is (from left to right): , , ,L L LNew Dom Rec

, , , and .L L L LAdd Larger Largest Unc

equals its unconstrained maximum in thel (d ,d ,a,b)2 1 2

former case and equals in the latter case.LLarger

Specifically, the constrained maximum of l (d ,d ,a,b)2 1 2

can be obtained as follows. Do the unconstrained max-
imization of , and denote the values of ,l (d ,d ,a,b) d2 1 2 1

, a, and b for which is maximized byd l (d ,d ,a,b)2 2 1 2

, and , respectively. The constrained maximumˆ ˆ ˆˆd , d , a b1 2

of equals if and equalsˆ ˆ ˆ ˆ ˆˆl (d ,d ,a,b) l (d ,d ,a,b) d d 1 02 1 2 2 1 2 1 2

otherwise.LLarger

Next, we discuss two particular applications of this
constrained-likelihood approach, one to quantitative
traits and the other to dichotomous traits. For each
application, the asymptotic distribution of the likelihood-
ratio statistic is derived. There should be manyLNew

other possible applications, depending on the specifi-
cation of the random component and the link function
of the generalized linear model.

Quantitative Traits

Quantitative traits are usually modeled through a nor-
mal distribution, and the “canonical” link function is
the identity function . Assume that the varianceg(m) p m

of the normal distribution is the same, regardless of the
genotype, and denote this common variance by . The2j

parameter corresponds to the nuisance parameter b2j

in our generalized-linear-model setup. Now, the function
becomesl2

n0n 12 2 2l (d ,d ,a,j ) p � log j � (y � a)�2 1 2 0i2 [2 2j ip1

n1

2� (y � a � d )� 1i 1
ip1

n2

2� (y � a � d � d ) .� 2i 1 2 ]
ip1

The unconstrained maximum-likelihood estimates of
a, , , and are , ,2 ˆ ˆˆ ˆ¯ ¯ ¯d d j a p y d p y � a d p y �1 2 0 1 1 2 2

, andˆ ˆd � a1

n n0 112 2 2ˆˆ ˆ ˆj p (y � a) � (y � a � d )� �0i 1i 1[n ip1 ip1

n2

2ˆ ˆˆ� (y � a � d � d ) , (2)� 2i 1 2 ]
ip1

respectively. For the recessive model ( ), the maxi-d p 01

mum-likelihood estimates of a and are ˆd a p (n �2 0

and , respectively. For�1 ˆ ˆ¯ ¯ ¯n ) (n y � n y ) d p y � a1 0 0 1 1 2 2

the dominance model ( ), the maximum-likelihoodd p 02
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Figure 4 Power comparison for the quantitative trait when the
generating model is overdominant. The significance level is 0.001. The
order of statistics (shaded bars) is (from left to right): , ,L LNew Dom

, , , , and .L L L L LRec Add Larger Largest Unc

Table 3

Simulated Type I Error Rates for Dichotomous
Traits

FREQUENCY

OF ALLELE A,
SAMPLE SIZE,
AND STATISTIC

TYPE I ERROR RATE AT

NOMINAL SIGNIFICANCE LEVEL

.1 .05 .01 .001

:p p .1
:n p 100

LNew .0694 .0270 .0047 .0003
LDom .1094 .0516 .0107 .0007
LRec .1028 .0164 .0003 .0000
LAdd .1041 .0522 .0112 .0008
LLarger .0713 .0271 .0060 .0003
LUnc .0732 .0329 .0059 .0004

:n p 200
LNew .1158 .0494 .0075 .0006
LDom .1064 .0520 .0095 .0013
LRec .2008 .0577 .0039 .0001
LAdd .1045 .0531 .0106 .0011
LLarger .1057 .0424 .0064 .0008
LUnc .1101 .0484 .0078 .0006

:p p .3
:n p 100

LNew .1068 .0544 .0118 .0009
LDom .0869 .0570 .0120 .0009
LRec .1111 .0621 .0145 .0012
LAdd .1033 .0536 .0096 .0005
LLarger .1134 .0553 .0138 .0011
LUnc .1103 .0580 .0119 .0013

:n p 200
LNew .0935 .0445 .0099 .0017
LDom .1039 .0539 .0081 .0009
LRec .0978 .0493 .0105 .0020
LAdd .1035 .0499 .0082 .0014
LLarger .0999 .0499 .0104 .0014
LUnc .0971 .0480 .0113 .0016

:p p .5
:n p 100

LNew .0968 .0487 .0100 .0006
LDom .1017 .0498 .0101 .0011
LRec .1012 .0509 .0101 .0006
LAdd .1014 .0492 .0106 .0007
LLarger .1073 .0546 .0109 .0010
LUnc .1039 .0558 .0115 .0007

:n p 200
LNew .0977 .0471 .0084 .0007
LDom .1008 .0503 .0088 .0011
LRec .1023 .0539 .0102 .0006
LAdd .1053 .0525 .0103 .0009
LLarger .1054 .0508 .0088 .0007
LUnc .1032 .0488 .0083 .0006

NOTE.—Half of the sample is cases, and the other
half is controls.

estimates of a and are and ˆˆ ¯d a p y d p (n �1 0 1 1

, respectively. The variance is�1 2ˆ¯ ¯n ) (n y � n y ) � a j2 1 1 2 2

estimated by fixing (for the recessive model) ord̂ p 01

(for the dominance model) in equation (2). Underd̂ p 02

the null hypothesis, we have , and the maxi-d p d p 01 2

mum-likelihood estimate of a is .¯ ¯ ¯(n y � n y � n y )/n0 0 1 1 2 2

Given these results, it is straightforward to compute the
statistic .LNew

Let and1/2 �1/2g p (p p ) [(1 � p )(1 � p )] k p0 2 0 2

. In appendix A, it is shown that, as�1(2p) arccos (g)
,n r �

2 2 2 2Pr (L � x) r (1 � 2k) Pr (z � x , z � x )New 1 2

2� 2k Pr (x ! x) ,2

where follows a standard bivariate normal dis-t(z ,z )1 2

tribution with correlation coefficient g and where 2x2

follows a x2 distribution with 2 df. It is also shown in
appendix A that, as ,n r �

2 2 2 2Pr (L � x) r Pr (z � x , z � x ) .Larger 1 2

The statistic was proposed as a robust test statisticLLarger

(Freidlin et al. 2002), but its asymptotic distribution was
not given. The correlation coefficient g depends on the
genotype frequencies and . When their true val-p p0 2

ues are unknown, the genotype frequencies andp p0 2

can be consistently estimated by their respective sample
frequencies.

Dichotomous Traits

Dichotomous traits are usually modeled through bi-
nomial distribution, and the “canonical” link function
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Figure 5 Power comparison for the dichotomous trait when the generating model is dominant. The significance level is 0.001. Half of
the sample is cases, and the other half is controls. The order of statistics (shaded bars) is (from left to right): , , , , ,L L L L LNew Dom Rec Add Larger

, and .L LLargest Unc

is the logit function . In this situ-g(m) p log [m/(1 � m)]
ation, the log-likelihood function becomes, up to anl2

additive constant,

2

¯ ¯l (d ,d ,a) p n y log f � (1 � y ) log (1 � f ) ,[ ]�2 1 2 j j j j j
jp0

where , /f : p exp (a)/[1 � exp (a)] f : p exp (a � d )0 1 1

, and[1 � exp (a � d )] f : p exp (a � d � d )/[1 �1 2 1 2

are the penetrances of the trait for theexp (a � d � d )]1 2

three genotypes that have 0, 1, and 2 copies of allele A,
respectively. We note that the Armitage trend test typi-
cally assumes (Sasieni 1997).d p d1 2

The likelihood function depends on , ,l (d ,d ,a) d d2 1 2 1 2

and a through , , and . The constraint holdsf f f d d � 00 1 2 1 2

if and only if or holds. It is easyf � f � f f � f � f0 1 2 0 1 2

to obtain that the unconstrained maximum-likelihood
estimate of is , . For the dominance model¯f y j p 0,1,2j j

where (equivalent to ), the maximum-like-f p f d p 01 2 2

lihood estimate of is , and the maximum-likeli-¯f y0 0

hood estimate of is . For¯ ¯f p f (n y � n y )/(n � n )1 2 1 1 2 2 1 2

the recessive model where (equivalent to ),f p f d p 00 1 1

the maximum-likelihood estimate of is ¯f p f (n y �0 1 0 0

, and the maximum-likelihood estimate of¯n y )/(n � n )1 1 0 1

is . Under the null hypothesis, we have¯f y f p f p2 2 0 1

, and the maximum-likelihood estimate is ¯f (n y �2 0 0

. Given these results, it is again straight-¯ ¯n y � n y )/n1 1 2 2

forward to compute the statistic .LNew

The generalized linear model is appropriate for popu-
lation samples. For selected samples such as cases and
controls, it may not be appropriate. However, it has been
shown that simply applying logit regression to case-con-
trol data affects only the intercept term a and not the
slopes and (Prentice and Pyke 1979). Following thed d1 2

arguments of Prentice and Pyke (1979), it can be shown
that the intercept term depends on d1, d2, and a and that
the constraint has no impact on the value thed d � 01 2

intercept term can take (details omitted). So, for a case-
control study, one can treat the data as if they were
population samples and apply the proposed test.



774 Am. J. Hum. Genet. 77:768–780, 2005

Figure 6 Power comparison for the dichotomous trait when the generating model is recessive. The significance level is 0.001. Half of the
sample is cases, and the other half is controls. The order of statistics (shaded bars) is (from left to right): , , , , , ,L L L L L LNew Dom Rec Add Larger Largest

and .LUnc

In appendix B, it is shown that the asymptotic dis-
tribution of in this situation is identical to that ofLNew

the likelihood-ratio statistic for continuous traits.LNew

When true values are unknown, the genotype fre-
quencies and can be estimated by their respectivep p0 2

sample frequencies in the combined sample of cases and
controls.

Let p denote the frequency of allele A. Under the as-
sumption of Hardy-Weinberg equilibrium (HWE), some
quantiles of the asymptotic distribution for are tab-LNew

ulated in table 1 for , 0.1, 0.3, and 0.5. Wep p 0.01
note that, for , the genotype frequencies arep p 0.5

and , which are the expectedp p p p 0.25 p p 0.50 2 1

genotype frequencies for the population.F2

Simulation

Simulation studies were done for both quantitative traits
and dichotomous traits. The type I error rate and the
power were computed on the basis of 10,000 replications.

Quantitative Traits

Consider the following data-generating model:

y p G � e ,

where G is the genotypic value and e is an independent
environmental factor. Let for genotype 0,G p �a

for genotype 1, and for genotype 2. TheG p d G p a
distribution of e is taken to be the standard normal dis-
tribution whose mean is 0 and whose variance is 1. The
heritability for this model is , where2h : p V /(V � 1)G G

is the variance of the genotypic effect. Under theVG

assumption of HWE, , , and can be written asp p p0 1 2

, , and , where p is the frequency2 2p p q p p 2pq p p p0 1 2

of allele A and . According to Falconer andq p 1 � p
Mackay (1996), the genotypic variance V p 2pq[a �G

. Four generating models are consid-2 2d(q � p)] � (2pqd)
ered. They are the dominance model ( ), the recessived p a
model ( ), the additive model ( ), and and p �a d p 0
overdominance model ( ). Given heritability , the2d p 2a h
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Figure 7 Power comparison for the dichotomous trait when the generating model is additive. The significance level is 0.001. Half of the
sample is cases, and the other half is controls. The order of statistics (shaded bars) is (from left to right): , , , , , ,L L L L L LNew Dom Rec Add Larger Largest

and .LUnc

value of can be obtained from . For2 2V V p h /(1 � h )G G

any given allele frequency p, the value of a for each model
can be determined as follows: for2 1/2a p [V /4pq (1 � q)]G

the dominance model, for the re-2 1/2a p [V /4p q(1 � p)]G

cessive model, for the additive model, and1/2a p (V /2pq)G

for the overdomi-2 2 2 1/2a p [V /(2pq(4q � 1) � 16p q )]G

nance model.
To analyze data from these generating models, seven

statistics are computed. They are the proposed statistic
, the likelihood-ratio statistic for the domi-L LNew Dom

nant model ( ), the likelihood-ratio statisticd p 0 L2 Rec

for the recessive model ( ), the likelihood-ratio sta-d p 01

tistic for the additive model ( ), the sta-L d p 2dAdd 2 1

tistic , the statisticL p max {L ,L } L : pLarger Dom Rec Largest

, and the unconstrained likelihood-max {L ,L ,L }Dom Rec Add

ratio statistic that tests whether the three genotypicLUnc

means are the same or not. The asymptotic distributions
for and are given in this article. The threeL LNew Larger

statistics , , and follow an asymptotic x2L L LDom Rec Add

distribution with 1 df. The asymptotic distribution for

is a x2 with 2 df. The statistic was introducedL LUnc Largest

by Freidlin et al. (2002). Since its null distribution is
unknown, simulated critical values are used in its power
study.

The simulated type I error rates for statistics ,LNew

, , , , and are reported in table 2L L L L LDom Rec Add Larger Unc

for allele A frequency , 0.3, and 0.5 and forp p 0.1
sample size and 200. These type I error ratesn p 100
are close to their respective nominal significance levels,
which suggests that all these tests have valid size. A simi-
lar phenomenon is also observed in situations where
HWE does not hold (data not shown).

In the power study, the critical values for statistics
, , , , , and are from the re-L L L L L LNew Dom Rec Add Larger Unc

spective asymptotic null distributions of these statistics,
and the critical values for statistic at allele A fre-LLargest

quency , 0.3, and 0.5 are obtained from a simu-p p 0.1
lation with 10,000 replications. At significance level
0.001, the power of these seven statistics at allele fre-
quency , 0.3, and 0.5, heritability ,2p p 0.1 h p 0.05
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Figure 8 Power comparison for the dichotomous trait when the generating model is multiplicative. The significance level is 0.001. Half
of the sample is cases, and the other half is controls. The order of statistics (shaded bars) is (from left to right): , , , , ,L L L L LNew Dom Rec Add Larger

, and .L LLargest Unc

0.1, 0.15, and 0.2, and sample size and 200 isn p 100
graphed in figures 1, 2, 3, and 4, in which the generating
models are dominant, recessive, additive, and overdomi-
nant, respectively. It can be seen from these figures that,
as expected, the statistic performs best when theLDom

generating model is dominant, as do the statistic LRec

when the model is recessive and the statistic whenLAdd

the model is additive. The statistic performs worstLDom

when the generating model is recessive, and the statistic
performs worst when it is dominant. Overall, theLRec

four statistics , , , and seem to haveL L L LNew Larger Largest Unc

similar power. When the generating model is dominant
or recessive, the statistic shows marginally the bestLLarger

power among these four statistics. When the generating
model is additive, the statistic is slightly betterLLargest

than any of the other three. For the overdominance
model, the statistic has slightly more power thanLNew

the statistic for . For andL p p 0.1 p p 0.3 p pUnc

, the statistic shows higher power than the sta-0.5 LUnc

tistic .LNew

Dichotomous Traits

Let be the prevalence of the trait. The2
K p � f pi iip0

frequency of genotype i would be in the cases andf p /Ki i

in the controls. In the absence of as-(1 � f )p /(1 � K)i i

sociation, , and there is no differencef p f p f p K0 1 2

in genotype frequencies between cases and controls. Let
, , be the relative risk of genotype i com-g p f /f i p 1,2i i 0

pared with genotype 0. In the simulation, we consider
a dominance model ( ), a recessive model (g p g g p1 2 1

), an additive model ( ), a multiplicative1 g p (1 � g )/21 2

model ( ), and an overdominance model (1/2g p g g p1 2 1

). Given population prevalence K and the relative risk2g2

, can be determined from ,g f f p K/(p � g p � g p )2 0 0 0 1 1 2 2

from which and can be computed forf p g f f p g f1 1 0 2 2 0

each model. To simplify the calculation, it is assumed
again that HWE holds and that the frequency of allele
A is denoted by p.

The type I error rates for statistics , , ,L L LNew Dom Rec

, , and are reported in table 3 for al-L L LAdd Larger Unc
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Figure 9 Power comparison for the dichotomous trait when the generating model is overdominant. The significance level is 0.001. Half
of the sample is cases, and the other half is controls. The order of statistics (shaded bars) is (from left to right): , , , , ,L L L L LNew Dom Rec Add Larger

, and .L LLargest Unc

lele A frequency , 0.3, and 0.5 and sample sizep p 0.1
and 200. These results suggest that all six sta-n p 100

tistics have valid type I error rates. A similar finding is
also found in simulation studies where HWE fails (data
not shown).

In the power study, the critical values for the seven
statistics, including , are obtained in the same man-LLargest

ner as in the case of quantitative traits. At significance
level 0.001, the power of the seven statistics is simulated
for allele A frequency , 0.3, and 0.5, prevalencep p 0.1

, 0.1, and 0.3, and sample size andK p 0.01 n p 100
200 under five models; the results for the dominance
model, the recessive model, the additive model, the mul-
tiplicative model, and the overdominance model are
graphed in figures 5, 6, 7, 8, and 9, respectively. In these
simulations, the value of is fixed at . Similarg g p 32 2

simulations were also done for , but the patternsg p 22

were similar and so the results are not reported here.
The pattern of the power for these seven statistics is
similar to that in the case of quantitative traits.

For the recessive model, these seven statistics have very
similar power when allele A frequency . We sus-p p 0.1
pect that this may be caused by the rarity of the genotype
homozygous for allele A, since all statistics would be
close to the same likelihood-ratio statistic that tests the
equality of the genotype effects between the other two
genotypes.

Discussion

We have developed a constrained-likelihood approach to
marker-trait association analysis. This approach does
not require the specification of an analysis model. We
investigated two applications of this approach, one for
quantitative traits and the other for dichotomous traits.
The asymptotic distribution of the constrained likeli-
hood-ratio statistic was derived for both types of traits.
Simulation studies suggest that this approach has power
to detect association for a range of genetic models. Sim-
ulation results also suggest that the power of this ap-
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proach seems to be close to that of the model-based
method when the analysis model is correctly specified.
It should be noted that the constrained-likelihood ap-
proach has been applied to linkage analyses performed
using affected siblings (Holmans 1993) and using ex-
treme discordant sib pairs (Knapp 1998; Freidlin et al.
2003) and to association studies using parent-sibs trios
(Zheng et al. 2003) but not to the situation considered
in the current article.

This approach provides an alternative to the model-
based method and to the statistic that does not haveLUnc

any restriction on the genotypic means. It has power
for a wider range of underlying models than does the
model-based method, and it is more specific than the
statistic . It seems to be an appealing alternativeLUnc

method for cases in which specification of an analysis
model is inappropriate—for instance, in studies in which
numerous phenotypes are analyzed simultaneously, such
as expression QTL mapping (Brem et al. 2002; Schadt
et al. 2003; Yvert et al. 2003; Morley et al. 2004).

This approach is related to order-restricted inference
methods (Robertson et al. 1988). Order-constrained in-
ference methods are suitable for situations in which the
allele being tested for association is expected to increase
or decrease the trait value—for instance, gene-mapping
association studies of knockout mice. In comparison,
the proposed approach does not require any ordering
of the mean genotypic effects. What it requires is that
the mean effect of the heterozygous genotype not exceed
those of the two homozygous genotypes. In other words,
if one copy of the allele being tested has an increasing
or decreasing effect on the trait, then having an addi-
tional copy of this allele will not weaken this trend,
regardless of its direction. That is, the allele under in-
vestigation shows no overdominance effect.

This approach provides a single-marker test. There
are some recent findings that single-marker tests can be
used to construct inferential procedures for haplotype
analysis that are more powerful than some commonly
used haplotype analysis methods (Roeder et al. 2005;
Schaid et al. 2005). So, our approach has some inter-
esting implications for haplotype analysis as well. For
instance, Roeder et al. (2005) studied the performance
of, among other inferential procedures, a statistic that
is the largest single-marker test statistic over a set of
markers. By permuting the affection status among cases
and controls, it was found that this statistic is more
powerful than a test proposed by Chapman et al. (2003).
The single-marker test used by Roeder et al. (2005) is
based on allele counts and requires HWE for it to be
valid (Sasieni 1997). On the other hand, our proposed
approach is based on genotypes and does not require
HWE for its validity. It will be interesting to assess the
performance of the procedures of Roeder et al. (2005)
when the single-marker test is substituted with the test
proposed here.

The constrained-likelihood approach presented here
is conceptually simple. Such simplicity may be useful
for its generalization to situations other than those con-
sidered here. For instance, one could include covariates
in the analysis or consider markers with more than two
alleles.
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Appendix A

Asymptotic Distribution of : Continuous TraitsLNew

It is straightforward to obtain that, under , the Fisher information matrix for is2H (d ,d ,a,j )0 1 2

1 � p p 1 � p 00 2 0⎡ ⎤
p p p 0�2 2 2 2I p j .0 1 � p p 1 00 2⎢ ⎥

2 �10 0 0 (2j )⎣ ⎦

According to theorem 16.7 of van der Vaart (1998), when the null hypothesis is true, the likelihood-ratio statistic
converges toLNew

t tG: p inf (X � h) I (X � h) � inf (X � h) I (X � h)0 0
h�V h�V �V0 1 0

as , where X is normally distributed with mean vector 0 and covariance matrix .�1n r � I0
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Let be the partial variance matrix of the first two components of X, given the latter two components. ThatĨ0

is,

�1

1 � p p 1 � p 0 1 0 1 � p p�2 0 2 0 0 2Ĩ p j �0 2 �1[ ] [ ][ ] [ ]( )p p p 0 0 (2j ) 0 02 2 2

p (1 � p ) p p�2 0 0 0 2p j .[ ]p p p (1 � p )0 2 2 2

After some matrix calculation, it can be shown that G can be written as

˜ ˜ ˜ ˜t t˜ ˜ ˜ ˜ ˜ ˜G: p inf (X � h) I (X � h) � inf (X � h) I (X � h) ,0 0
˜ ˜˜ ˜ ˜h�V h�V �V0 1 0

where is a bivariate normal random vector with mean vector 0 and variance matrix ,�1˜ ˜ ˜X I V p {(d ,d ):d p0 0 1 2 1

, and . For G to have 2 df, the two components of must be either both strictly˜ ˜d p 0} V p {(d ,d ):d d � 0} X2 1 1 2 1 2

positive or both strictly negative. Since the correlation coefficient between these two components is g p
, the probability that the two components are both strictly positive or both strictly1/2 �1/2(p p ) [(1 � p )(1 � p )]0 2 0 2

negative is . When both components of are strictly positive or negative, the constraint�1 ˜2 # (2p) arccos (g) p 2k X
is not binding and G has 2 df.d d � 01 2

The probability that G does not have 2 df is . In this case, we have .1 � 2k L p L p max {L ,L }New Larger Dom Rec

According to standard asymptotic theory (e.g., that of Cox and Hinkley [1974]), is asymptotically equivalentLDom

to the score statistic , where2TDom

1/2 2 �1/2ˆ ¯ ¯ ¯T p [n (n � n )] (nj ) [(n y � n y )/(n � n ) � y ] ,Dom 0 0 1 1 2 2 1 2 0

and is asymptotically equivalent to the score statistic , where2L TRec Rec

1/2 2 �1/2ˆ ¯ ¯ ¯T p [n (n � n )] (nj ) [y � (n y � n y )/(n � n )] .Rec 2 2 2 0 0 1 1 0 1

The maximum-likelihood estimate of under the null hypothesis is2j

2 nj

2 �1 2ˆ ¯j p n (y � y) ,�� ji
jp0 ip1

where is the grand mean of the trait. The correlation coefficient between and¯ ¯ ¯ ¯y p (n y � n y � n y )/n T0 1 1 1 2 2 Dom

is , which converges to as . Asymptotically,1/2 �1/2 1/2 �1/2T (n n ) [(n � n )(n � n )] g p (p p ) [(1 � p )(1 � p )] n r �Rec 0 2 0 2 0 2 0 2

and jointly follow bivariate normal distribution , whose correlation coefficient is g and for whichtT T (z ,z )Dom Rec 1 2

both and follow the standard normal distribution. Hence, for any , we havez z x � 01 2

Pr (L � x) p Pr (L � x, L � x)Larger Dom Rec

2 2r Pr (z � x, z � x)1 2

1/2 1/2 1/2 1/2p Pr (�x � z � x , � x � z � x ) .1 2
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Appendix B

Asymptotic Distribution of : Dichotomous TraitsLNew

The arguments for dichotomous traits are parallel to those for continuous traits given in appendix A. For
dichotomous traits, the Fisher information matrix becomesI0

1 � p p 1 � p0 2 0⎡ ⎤
f (1 � f ) p p p ,0 0 2 2 2⎢ ⎥

1 � p p 1⎣ ⎦0 2

and the matrix becomesĨ0

p (1 � p ) p p0 0 0 2f (1 � f ) .0 0 [ ]p p p (1 � p )0 2 2 2

Both matrices are proportional to those in appendix A. So, the probability that has 2 df remains the same.LNew

The calculation of is also parallel. The expressions for and remain the same, but the expressionL T TLarger Dom Rec

for is different. In the situation of dichotomous traits, we need to substitute with , where is the2 2ˆ ˆ ¯ ¯ ¯j j y(1 � y) y
proportion of cases among the total number of subjects. This change in does not affect the asymptotic distribution2ĵ

of or, hence, that of .L LLarger New

Web Resources

The URL for data presented herein is as follows:

K.W.’s Web site, http://arctica.public-health.uiowa.edu/
research.html (for a publicly available R program that im-
plements the method described in this article)
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